

Effective Flexural Stiffness for Cracked Moment of Inertia of Concrete Walls

The cracked moment of inertia for tilt-up wall panels can be calculated using different ACI 318 provisions. The following shows the commonly used provisions to calculate the cracked moment of inertia:

- 1. 0.35 Ig for cracked walls and 0.75 Ig for uncracked walls <u>ACI 318-14 (Table 6.6.3.1.1(a))</u>
- 2. When treating the wall as compression member:

$$\left(0.80 + 25 \times \frac{A_{st}}{A_g}\right) \times \left(1 - \frac{M_u}{P_u \times h} - 0.5 \times \frac{P_u}{P_o}\right) \times I_g \le 0.875 \times I_g \qquad \underline{ACI \ 318-14 \ (Table \ 6.6.3.1.1(b))}$$

3. When treating the wall as flexural member:

$$(0.10+25\times\rho)\times\left(1.2-0.2\times\frac{b_w}{d}\right)\times I_g \le 0.5\times I_g$$
 ACI 318-11 (Table 6.6.3.1.1(b))

4. Using the moment magnification procedure for nonsway frames:

$$\frac{0.2 \times E_c \times I_g + E_s \times I_{se}}{(1 + \beta_{dns}) \times E_c}$$
ACI 318-14 (Eq. 6.6.4.4.4b)

5. Using the moment magnification procedure for nonsway frames:

$$\frac{0.4 \times E_c \times I_g}{(1+\beta_{dns}) \times E_c} \qquad \underline{ACI 318-14 (Eq. 6.6.4.4.4a)}$$

6. Using the alternative design method of slender walls:

$$n \times A_{se} \times (d-c)^2 + \frac{l_w \times c^3}{3}$$
 ACI 318-14 (Eq. 11.8.3.1d)

Equation 11.8.3.1d is adopted and used in <u>the StructurePoint detailed design examples for the analysis and design of</u> <u>tilt-up walls</u> to calculate the cracked moment of inertia for the wall section modeled in <u>spWall</u>. This is intended to best represent the reference approach using the alternative design method to analyze and design a tilt-up wall panel.

The variation in the magnitude of I_{cr} has a significant effect on the analysis results and specifically the wall moments and displacement. In the following table a comparison of the resulting values based on variation of the I_{cr} is summarized for two wall piers in a tilt-up wall panel. The complete discussion including the modeling, analysis, design and deflection calculation can be found in "<u>Reinforced Concrete Tilt-Up Wall Panel with Opening Analysis and Design (ACI 551)</u>" design example. Note that this example uses ACI 318-11 to be consistent with the latest version of ACI 551.2R-15. No major changes on the equations except the citation.

Table 1 – Comparison of I _{cr} Effect on Results											
Method	I _{cr} , in. ⁴		Cracking coefficient (α) for spWall		M _u , kip-ft			D _{z,service} , in.		D _{z,ultimate} , in.	
	Left	Right	Left	Right	Left	Right	Total	Left	Right	Left	Right
Eq. 1	938	1407	0.350	0.350	17.03	20.03	37.06	0.203	0.164	0.80	0.63
Eq. 2	2345	3517	0.875	0.875	15.66	18.77	34.43	0.203	0.164	0.29	0.24
Eq. 3	607	715	0.227	0.178	18.49	22.43	40.92	0.203	0.164	1.33	1.37
Eq. 4	126	159	0.047	0.040	177.67	121.55	299.22	0.203	0.164	59.8	32.2
Eq. 5	133	200	0.050	0.050	109.04	57.51	166.55	0.203	0.164	34.6	12.3
Eq. 6	291	356	0.109	0.088	29.68	29.79	59.47	0.204	0.164	5.46	3.65
Eq. 6*	218	267	0.081	0.066	32.41	37.85	70.26	0.204	0.164	6.46	6.16
* Eq. 11.8.3.1d in ACI 318-14 with reduction factor of 0.75 (from 11.8.3.1)											

From the table above the following can be observed:

- 1. The values above reveal the necessity to carefully select I_{cr} value (and the corresponding α value) to ensure the wall moment capacity and estimated deflections are calculated with sufficient conservatism ensuring adequate strength and stability.
- 2. The $D_{z,service}$ values are unaffected by the method used to calculate I_{cr} since the section is uncracked and the cracking coefficient α is taken as 1 for that example.
- 3. The D_{z,ultimate}, values are calculated however are not used in any calculations and the deflection limits are given for D_{z,service} only.
- 4. The range of the cracking coefficient and the cracked moment of inertia values vary widely based on the equation used.
- 5. In the selected example, the <u>spWall</u> model utilized the value of the cracked moment of inertia using the alternative design method equation Eq. 11.8.3.1d with reduction factor from 11.8.3.1.